中国科学院上海光学精密机械研究所(简称:上海光机所)成立于1964年5月,是我国建立最早、规模最大的激光科学技术专业研究所。发展至今,已形成以探索现代光学重大基础及应用基础前沿、发展大型激光工程技术并开拓激光与光电子高技术应用为重点的综合性研究所。研究...
中国科学院上海光学精密机械研究所(简称:上海光机所)是我国建立最早、规模最大的激光专业研究所,成立于1964年,现已发展成为以探索现代光学重大基础及应用基础前沿研究、发展大型激光工程技术并开拓激光与光电子高技术应用为重点的综合性研究所。重...
上海光机所国际合作工作始终围绕上海光机所的主责主业,以服务重大任务和国家需求为牵引,强化目标导向,注重内外集成协同,加强重大国际合作任务的谋划。坚持“战略布局,需求牵引,技术引领,合作共赢”的原则,基于科技部授予的国家国际科技合作基地及本单位学科技术优势,围绕“一带一路”国家倡议,深化拓展与发达国家实质性合作,夯实海外机构建设,积极培育和发起国际大科学计划,加强国际组织任职推荐,组织相关国际会议等,汇聚各类国际人才,建立以“平台-人才-项目-组织”合作模式,融入全球创新合作网络,助力上海光机所成为国际一流科研机构。上海光机所国际合作一直得到所领导的高度重视,历届所长亲自主管国际合作。1972年,上海光机所接待诺贝尔奖的美籍华裔科学家杨振宁,标志着我所第一次对外开放。2007年,被科技部首批授予“科技部国际科技合作基地”。2016年,科技部首次对全国2006-2008年间认定的113家国际合作基地进行了评估,上海光机所获评“优秀”。2021年,科技部首次对全国719家国际合作基地进行了评估,上海光机所持续获评“ 优秀”。王岐山副主席到上海光机所视察时,对上海光机所近几年取得的系列科技成果,以及重大国际合作项目“中以高功...
作为我国建立最早、规模最大的激光科学技术专业研究所,和首批上海市科普教育基地之一,中国科学院上海光学精密机械研究所(简称:上海光机所)在致力于科技创新的同时,十分重视科普工作。多年来,上海光机所借助科研院所强大的科普资源优势,围绕光学与激光科学技术,积极开展公众开放日、科普讲座、科技课堂、科普作品创...
题目:Light induced self-organization in organic thin-films
姓名:Prof. Jean-Michel Nunzi
单位:Department of Physics, engineering Physics and Astronomy, Department of Chemistry, Queen’s University, Canada
时间:2019年5月31日(周五) 上午9:30
地点:18号楼5楼会议室
Abstract:
Our team studies self-organization and the instrumentation related to organic photonic materials and devices. Major questions we try to answer are: what does light do for us and what do we get from the sun1?
For instance, there currently exists a significant demand for IR broadband photoresponsive devices for applications ranging from photovoltaics and renewable energy to photodetection for military and civilian purposes. When considering the effectiveness of those photosensitive devices, several factors must be considered including photoresponsivity, fabrication process, and cost. Moreover, the spatial resolution of IR photodetectors can be significantly improved by simultaneously sensing the intensity and polarization of the incident light.
Photodetection through conventional procedures is based on light absorption by a material with a matching bandgap. However, this approach limits the range of wavelengths that can be detected, it is not sensitive to polarization, and cannot be used accurately in the infrared range because of thermal noise.3 Recent approaches have attempted to circumvent these limitations.
Metal–semiconductor Schottky junctions have been reported as the most efficient structures to collect hot electrons5 and generate a signal in photodetectors. However, previously reported photodetectors based on this methodology can be very costly to fabricate, and not suitable for large-scale fabrication. Herein, we demonstrate that ITO-Au nanostructures can indeed be used to fabricate a NIR photodetector6 using the rectification effect induced by dipole orientation in a thin fim.
Our designed device structure allows the fabrication of hot electron-based photodetectors that are highly sensitive in the NIR range, that are sensitive to polarization, and that are easy and cost-effective to fabricate. The approach developed herein represents a significant milestone towards the development of energy conversion devices based on hot electrons and plasmonics, which will be beneficial to integrated optoelectronics and photocatalysis.
1.Lewis, N.S., Basic research needs for solar energy utilization, 2005, www.osti.gov/servlets/purl/899136
2.Zhang, E. et al., tunable ambipolar polarization-sensitive photodetectors based on high-anisotropy ReSe2 nanosheets. ACS Nano 2016, 10, 8067.
3.Mandal, P.; Sharma, S., Progress in plasmonic solar cell efficiency improvement: a status review. Renew. Sust. Energy Rev. 2016, 65, 537.
4.Wen, L. et al., Enhanced photoelectric and photothermal responses on silicon platform by plasmonic absorber and omni-schottky junction. Laser Phot. Rev. 2017, 11, 1700059.
5.Lee, Y.K. et al., Hot-electron-based solar energy conversion with metal-semiconductor nanodiodes. J. Phys. Cond. Matter 2016, 28, 254006.
6.Mirzaee, S.M.A.; Lebel, O.; Nunzi, J.M., A simple unbiased hot-electron polarization-sensitive near-infrared photo-detector. ACS Appl.Mater.Inter. 2018, 10, 11862.
7.Sentein, C.; Fiorini, C.; Lorin, A.; Nunzi, J.M, Molecular rectification in oriented polymer structures. Adv. Mater. 1997, 9, 809.
Biography:
Professor Jean-Michel Nunzi, received his Ph.D. degree in Physics from Plasmon Nonlinear Optics, école Polytechnique (France) in 1984, and Ph.D. degree in Physics from Polymer Nonlinear Optics, Commissariat à l'énergie Atomique in 1990. Now he is a full professor of Department of Physics, engineering Physics and Astronomy, Department of Chemistry, Queen’s University, Canada. Tier 1 Canada Research Chair in Photonics for Life. He is also the visiting scientists of our institute under the CAS President’s International Fellowship Initiative for 2017. His research interests are the optical and electronic properties of organic materials and devices, including photo-physics, nonlinear optics, self-organization under light, charge generation and transport, solar cells, plastic lasers, nano-materials, bio-compatible materials and devices. He also studies the fabrication of chiral structures using light - matter interactions. Up to now, he has published 11 patents, 240 peer-reviewed publications. More than 7000 citations, H-index is 44. He is SPIE Senior Membership, IOP Fellow, ACS National Membership, Member of the Optical Society of America, and Member of Chemical Institute of Canada and Constituent Societies. He also serves as Editorial Board Member of Scientific Reports, Chinese Optics Letters, European Physical Journal: Applied Physics, and Energies.
附件下载:
copyright
2000-
中国科学院上海光学精密机械研究所 沪ICP备05015387号-1
主办:中国科学院上海光学精密机械研究所 上海市嘉定区清河路390号(201800)
转载本站信息,请注明信息来源和链接。 沪公网安备 31011402010030号