中国科学院上海光学精密机械研究所(简称:上海光机所)成立于1964年5月,是我国建立最早、规模最大的激光科学技术专业研究所。发展至今,已形成以探索现代光学重大基础及应用基础前沿、发展大型激光工程技术并开拓激光与光电子高技术应用为重点的综合性研究所。研究...
中国科学院上海光学精密机械研究所(简称:上海光机所)是我国建立最早、规模最大的激光专业研究所,成立于1964年,现已发展成为以探索现代光学重大基础及应用基础前沿研究、发展大型激光工程技术并开拓激光与光电子高技术应用为重点的综合性研究所。重...
上海光机所国际合作工作始终围绕上海光机所的主责主业,以服务重大任务和国家需求为牵引,强化目标导向,注重内外集成协同,加强重大国际合作任务的谋划。坚持“战略布局,需求牵引,技术引领,合作共赢”的原则,基于科技部授予的国家国际科技合作基地及本单位学科技术优势,围绕“一带一路”国家倡议,深化拓展与发达国家实质性合作,夯实海外机构建设,积极培育和发起国际大科学计划,加强国际组织任职推荐,组织相关国际会议等,汇聚各类国际人才,建立以“平台-人才-项目-组织”合作模式,融入全球创新合作网络,助力上海光机所成为国际一流科研机构。上海光机所国际合作一直得到所领导的高度重视,历届所长亲自主管国际合作。1972年,上海光机所接待诺贝尔奖的美籍华裔科学家杨振宁,标志着我所第一次对外开放。2007年,被科技部首批授予“科技部国际科技合作基地”。2016年,科技部首次对全国2006-2008年间认定的113家国际合作基地进行了评估,上海光机所获评“优秀”。2021年,科技部首次对全国719家国际合作基地进行了评估,上海光机所持续获评“ 优秀”。王岐山副主席到上海光机所视察时,对上海光机所近几年取得的系列科技成果,以及重大国际合作项目“中以高功...
作为我国建立最早、规模最大的激光科学技术专业研究所,和首批上海市科普教育基地之一,中国科学院上海光学精密机械研究所(简称:上海光机所)在致力于科技创新的同时,十分重视科普工作。多年来,上海光机所借助科研院所强大的科普资源优势,围绕光学与激光科学技术,积极开展公众开放日、科普讲座、科技课堂、科普作品创...
题目:Synthesis and Applications of CVD-Grown 2D Materials
姓名:Dr. Niall McEvoy
单位:爱尔兰都柏林大学圣三一学院
时间:2016年1月12日(周二) 上午10:00
地点:1号楼108会议室
摘要:This presentation will focus on the growth of 2D materials, including graphene and transition metal dichalcogenides (TMDs), by chemical vapor deposition (CVD) and their subsequent assessment for use in a variety of applications. This will aim to give an overview of the ongoing research in the Architecture and Synthesis of Integrated Nanostrctures (ASIN) group in Trinity College Dublin.
In the first part of the talk, recent advances in post-growth modification and applications of CVD-grown graphene will be discussed. This will include the fabrication of graphene-Si Schottky barrier diodes[1], transfer printing of CVD graphene to intentionally introduce periodic ripples[2] and the assembly of diffusion barriers through the stacking of multiple large-area graphene sheets[3].
The second part of the talk will focus on the synthesis of TMD films by thermally assisted conversion (TAC) of predeposited metal layers. 2D TMDs, often thought of as semiconducting analogues of graphene, have moved to the foreground of the research community owing to their fascinating properties which make them of great interest for both fundamental studies and emerging applications. TAC is a method which shows promise for the scalable and industry-compatible synthesis of these materials[4]. The production of an assortment of TMDs by TAC, including MoS2 and WSe2, will be outlined and their high-quality demonstrated using an array of characterization techniques including Raman spectroscopy, X-ray photoelectron spectroscopy and transmission electron microscopy.
The potential of TAC derived TMDs for various applications in the realm of electronics and energy will be discussed. The fabrication of high-performance gas sensors, consisting of MoS2 channels, with room temperature detection limits in the ppb range for NH3 will be described in detail[5]. The fabrication of large-scale heterojunction diodes, formed by transferring n-type MoS2 onto p-type Si, will be outlined. The obtained p-n heterojunction diodes exhibit notable photoconductivity which can be tuned by modifying the thickness of the MoS2 layer[6]. Additionally, a novel catalyst platform for the hydrogen evolution reaction (HER), consisting of MoS2 (or other TMDs) grown directly on top of a carbon electrode, will be discussed[7]. TAC synthesis, characterization and potential applications of exotic TMDs, beyond the commonly reported sulfides and selenides of Mo and W, will be discussed.
Finally, the synthesis of high-quality TMDs by a true CVD processes using a microreactor and liquid-phase exfoliated precursors will be detailed[8]. The use of Raman spectroscopy, and in particular low-frequency Raman spectroscopy, to characterize these materials will be outlined[9].
References
[1] "Chemically Modulated Graphene Diodes", Hye-Young Kim, Kangho Lee, Niall McEvoy, Chanyoung Yim and Georg S. Duesberg, Nano Letters, 13(5), 2182-2188, (2013)
[2] "Controlled Folding of Graphene: GraFold Printing", Toby Hallam, Amir Shakouri, Emanuele Poliani, Aidan P. Rooney, Ivan Ivanov, Alexis Potie, Hayden K. Taylor, Mischa Bonn, Dmitry Turchinovich, Sarah J. Haigh, Janina Maultzsch, Georg S. Duesberg , Nano Letters, 15(2), 857-863, (2015)
[3] "Large-Scale Diffusion Barriers from CVD Grown Graphene", Christian Wirtz, Nina C. Berner and Georg S. Duesberg, Advanced Materials Interfaces, 2(14), (2015)
[4] "Controlled Synthesis of Transition Metal Dichalcogenide Thin Films for Electronic Applications", Riley Gatensby, Niall McEvoy, Kangho Lee, Toby Hallam, Nina C. Berner, Ehsan Rezvani, Sinéad Winters, Maria O'Brien, Georg S. Duesberg, Applied Surface Science, 297, 139-146, (2014)
[5] "High Performance Sensors Based on Molybdenum Disulfide Thin Films", Kangho Lee, Riley Gatensby, Niall McEvoy, Toby Hallam, Georg S. Duesberg, Advanced Materials, 25(46), 6699-6702, (2013)
[6] "Heterojunction Hybrid Devices from Vapor Phase Grown MoS2", Chanyoung Yim, Maria O'Brien, Niall McEvoy, Sarah Riazimehr, Heiko Schäfer-Eberwein, Andreas Bablich, Ravinder Pawar, Giuseppe Iannaccone, Clive Downing, Gianluca Fiori, Max C. Lemme & Georg S. Duesberg, Scientific Reports, 4, 5458, (2014)
[7] "Molybdenum disulfide/pyrolytic carbon hybrid electrodes for scalable hydrogen evolution", Hugo Nolan, Niall McEvoy, Maria O'Brien, Nina C. Berner, Chanyoung Yim, Toby Hallam, Aidan R. McDonald and Georg S. Duesberg, Nanoscale, 6, 8185-8191, (2014)
[8] "Transition Metal Dichalcogenide Growth via Close Proximity Precursor Supply", Maria O'Brien, Niall McEvoy, Toby Hallam, Hye-Young Kim, Nina C. Berner, Damien Hanlon, Kangho Lee, Jonathan N. Coleman & Georg S. Duesberg, Scientific Reports, 4, 7374, (2014)
[9] “Mapping of Low-Frequency Raman Modes in CVD-Grown Transition Metal Dichalcogenides: Layer Number, Stacking Orientation and Resonant Effects", Maria OBrien, Niall McEvoy, Damien Hanlon, Jonathan N. Coleman, Georg S. Duesberg, Scientific Reports, Just Accepted
所办公室
2016年1月7日
附件下载:
copyright
2000-
中国科学院上海光学精密机械研究所 沪ICP备05015387号-1
主办:中国科学院上海光学精密机械研究所 上海市嘉定区清河路390号(201800)
转载本站信息,请注明信息来源和链接。 沪公网安备 31011402010030号