中国科学院上海光学精密机械研究所(简称:上海光机所)成立于1964年5月,是我国建立最早、规模最大的激光科学技术专业研究所。发展至今,已形成以探索现代光学重大基础及应用基础前沿、发展大型激光工程技术并开拓激光与光电子高技术应用为重点的综合性研究所。研究...
中国科学院上海光学精密机械研究所(简称:上海光机所)是我国建立最早、规模最大的激光专业研究所,成立于1964年,现已发展成为以探索现代光学重大基础及应用基础前沿研究、发展大型激光工程技术并开拓激光与光电子高技术应用为重点的综合性研究所。重...
上海光机所国际合作工作始终围绕上海光机所的主责主业,以服务重大任务和国家需求为牵引,强化目标导向,注重内外集成协同,加强重大国际合作任务的谋划。坚持“战略布局,需求牵引,技术引领,合作共赢”的原则,基于科技部授予的国家国际科技合作基地及本单位学科技术优势,围绕“一带一路”国家倡议,深化拓展与发达国家实质性合作,夯实海外机构建设,积极培育和发起国际大科学计划,加强国际组织任职推荐,组织相关国际会议等,汇聚各类国际人才,建立以“平台-人才-项目-组织”合作模式,融入全球创新合作网络,助力上海光机所成为国际一流科研机构。上海光机所国际合作一直得到所领导的高度重视,历届所长亲自主管国际合作。1972年,上海光机所接待诺贝尔奖的美籍华裔科学家杨振宁,标志着我所第一次对外开放。2007年,被科技部首批授予“科技部国际科技合作基地”。2016年,科技部首次对全国2006-2008年间认定的113家国际合作基地进行了评估,上海光机所获评“优秀”。2021年,科技部首次对全国719家国际合作基地进行了评估,上海光机所持续获评“ 优秀”。王岐山副主席到上海光机所视察时,对上海光机所近几年取得的系列科技成果,以及重大国际合作项目“中以高功...
作为我国建立最早、规模最大的激光科学技术专业研究所,和首批上海市科普教育基地之一,中国科学院上海光学精密机械研究所(简称:上海光机所)在致力于科技创新的同时,十分重视科普工作。多年来,上海光机所借助科研院所强大的科普资源优势,围绕光学与激光科学技术,积极开展公众开放日、科普讲座、科技课堂、科普作品创...
报告人: | Dr. Thomas Clayson | |
报告题目: |
面向实验室天体物理学的磁驱动辐射冲击实验 | |
报告时间: | 2018年9月7日(周五) 12:30-13:30 | |
报告地点: | 1号楼多功能厅 |
报告简介 | 议题海报 | 本期照片 | 本期议题简讯 |
Abstract |
报告人简介: Dr. Thomas Clayson is currently a scientist at First Light Fusion in the UK, working in the pulsed power team. He completed his PhD at Imperial College London under the supervision of Dr. Francisco Suzuki-Vidal and Prof. Sergey Lebedev. His current research focuses on High-Energy Density Physics (HEDP), Inertial Confinement Fusion (ICF) and pulsed power engineering.
报告摘要: Magnetically-Driven Radiative Shock Experiments for Laboratory Astrophysics We present results from new experiments, aimed at producing radiative shocks, using an “inverse liner” configuration on the MAGPIE pulsed power facility (~1.4 MA in 240 ns) [1] at Imperial College London in the UK. These experiments bear many similarities to magnetized liner inertial fusion (MagLIF) [2] and previous converging liner experiments performed on MAGPIE [3], where a large current is passed through a thin walled metal cylinder (liner) filled with gas, causing it to magnetically compress the gas. Our experimental setup uses an “inverse liner” where the liner is surrounded by gas and the inside is vacuumed out. Current is passed through the liner and then returned through a central rod on the axis, generating a strong (~40 Tesla) toroidal magnetic field within the liner. This drives a shock through the liner which in turn drives a cylindrically symmetric, radially expanding radiative shock in to the gas surrounding the liner. Unlike converging shock experiments, where the dynamics are located within the imploding liner and thus difficult to probe, our experimental setup is much more open for diagnostic access, can be probed from the side and allows shocks to propagate significantly further. Multi-frame optical self-emission imaging, 532 nm and 355 nm laser interferometry, optical emission spectrometry and magnetic probes were used to provide a better understanding of the shock dynamics. Experiments were performed in a variety of different gases (Ne, Ar, Kr, Xe at pressures 1-50 mbar), while maintaining a constant mass density to produce similar shock hydrodynamics. This new configuration for producing radiative shocks provides a unique platform for numerical validation and laboratory astrophysics applications. [1] I. H. Mitchell et al. “A high impedance mega-ampere generator for fiber z-pinch experiments” Review of Scientific Instruments, 67, 1533-1541 (1996) [2] M. Gomez et al. “Experimental demonstration of fusion-relevant conditions in magnetized liner inertial fusion” Physical Review Letters, 113, 155003 (2014) [3] G. Burdiak et al. “Cylindrical liner Z-pinch experiments for fusion research and high-energy density physics” Journal of Plasma Physics, 81(3), 365810301 (2015) |
本期论坛照片 |
|
附件下载:
copyright
2000-
中国科学院上海光学精密机械研究所 沪ICP备05015387号-1
主办:中国科学院上海光学精密机械研究所 上海市嘉定区清河路390号(201800)
转载本站信息,请注明信息来源和链接。 沪公网安备 31011402010030号