中国科学院上海光学精密机械研究所(简称:上海光机所)成立于1964年5月,是我国建立最早、规模最大的激光科学技术专业研究所。发展至今,已形成以探索现代光学重大基础及应用基础前沿、发展大型激光工程技术并开拓激光与光电子高技术应用为重点的综合性研究所。研究...
中国科学院上海光学精密机械研究所(简称:上海光机所)是我国建立最早、规模最大的激光专业研究所,成立于1964年,现已发展成为以探索现代光学重大基础及应用基础前沿研究、发展大型激光工程技术并开拓激光与光电子高技术应用为重点的综合性研究所。重...
上海光机所国际合作工作始终围绕上海光机所的主责主业,以服务重大任务和国家需求为牵引,强化目标导向,注重内外集成协同,加强重大国际合作任务的谋划。坚持“战略布局,需求牵引,技术引领,合作共赢”的原则,基于科技部授予的国家国际科技合作基地及本单位学科技术优势,围绕“一带一路”国家倡议,深化拓展与发达国家实质性合作,夯实海外机构建设,积极培育和发起国际大科学计划,加强国际组织任职推荐,组织相关国际会议等,汇聚各类国际人才,建立以“平台-人才-项目-组织”合作模式,融入全球创新合作网络,助力上海光机所成为国际一流科研机构。上海光机所国际合作一直得到所领导的高度重视,历届所长亲自主管国际合作。1972年,上海光机所接待诺贝尔奖的美籍华裔科学家杨振宁,标志着我所第一次对外开放。2007年,被科技部首批授予“科技部国际科技合作基地”。2016年,科技部首次对全国2006-2008年间认定的113家国际合作基地进行了评估,上海光机所获评“优秀”。2021年,科技部首次对全国719家国际合作基地进行了评估,上海光机所持续获评“ 优秀”。王岐山副主席到上海光机所视察时,对上海光机所近几年取得的系列科技成果,以及重大国际合作项目“中以高功...
作为我国建立最早、规模最大的激光科学技术专业研究所,和首批上海市科普教育基地之一,中国科学院上海光学精密机械研究所(简称:上海光机所)在致力于科技创新的同时,十分重视科普工作。多年来,上海光机所借助科研院所强大的科普资源优势,围绕光学与激光科学技术,积极开展公众开放日、科普讲座、科技课堂、科普作品创...
超强激光科学卓越创新简报
(第五百六十二期)
2024年10月16日
上海光机所在高能激光系统光隔离器用TAG、YIG磁光透明陶瓷研究方面取得进展
近期,中国科学院上海光学精密机械研究所空天激光技术与系统部王俊研究团队、先进激光与光电功能材料部周圣明研究团队先后在Mg、Si共掺杂TAG磁光陶瓷和应用于中红外波段的YIG磁光陶瓷研究方面取得进展,相关成果分别以“Fabrication of high optical quality TAG ceramics by vacuum sintering and non-stoichiometric Mg2+-Si4+ co-doping”和“Characteristics of Y3Fe5O12 ceramic at mid-infrared wavelengths and its Faraday isolator application”为题发表于Journal of the European Ceramic Society和Optics & Laser Technology。
磁光材料是一类能够将光信号与磁效应联系起来的先进材料,它们在光电子领域中扮演着至关重要的角色。这些材料利用磁光效应,即光与磁化介质相互作用时偏振方向的改变,为光学隔离器、光环行器和其他磁光设备提供了基础。在这些材料中,铽铝石榴石(TAG)和钇铁石榴石(YIG)磁光陶瓷因其独特的物理特性而备受关注。
其中,TAG陶瓷已成为一种很有前景的高功率法拉第隔离器的磁光材料,具有高Verdet常数、高热导率、在可见光到近红外波段的高透过率等优点,与常用的商用TGG单晶相比,TAG陶瓷的Verdet常数约高30%,导热系数约高14%。优良的综合性能使其在数百瓦功率的连续激光下具有更低的热退偏度和更高的隔离度,适合应用于更高功率的激光系统中。在TAG陶瓷烧结中,MgO和TEOS是常用的添加剂,它们的联合使用可在较低的温度条件下形成SiO2-MgO-Al2O3液相体系,有利于样品致密化。然而,石榴石中Mg/Si离子固态溶液的范围相对较窄,实验中残留的烧结添加剂很可能是阻碍陶瓷质量进一步提高的重要因素。
图1 TAG陶瓷(1.5 mm厚)的照片和透过率曲线
研究团队开发了一种镁硅共掺杂铽铝石榴石磁光陶瓷制备方法,该陶瓷获得了目前采用一步真空固相反应烧结方法制备TAG陶瓷的最高透过率和最低光学损耗。研究参考过去按照MgO+TEOS重量比添加的TAG陶瓷样品的最佳组成比,并将其设计到晶格中,以探索制备具有较低残留散射的TAG陶瓷。使用Mg2+和Si4+离子作为TAG晶格的组分,用于非化学计量比共掺杂,在不降低MgO和TEOS的绝对量的情况下,陶瓷在1064 nm处的透过率为82.48 %,光学损耗为0.048 cm-1,并系统地分析了硅掺杂量对TAG陶瓷微观结构和光学性能的影响。非化学计量的晶格掺杂代替传统的烧结助剂重量比添加,为制备高功率激光系统中其他受残留烧结添加剂影响的高质量陶瓷提供了有效的解决思路。
图2 TAG陶瓷的XRD精修、晶体结构以及随着Si4+含量变化的晶格参数
图3: Mg2+-Si4+共掺杂TAG透明陶瓷在1650℃烧结20小时后的扫描电镜图像以及陶瓷的平均晶粒尺寸
另一方面,YIG是一种亚铁磁材料,以其优异的磁性能和磁光性能在微波通信、激光技术和光纤通讯等领域具有重要应用。YIG材料的法拉第旋转角大,红外透过率高、光吸收率低,是制作法拉第旋转器、红外光隔离器等器件的重要核心材料。它们的法拉第效应及其在传统C波段法拉第隔离器(FI)中的应用已经被证明并被广泛应用。然而,YIG材料在中红外波段的特性并未被探索与开发,同时,依靠YIG陶瓷的尺寸可伸缩性优势,提高工作功率和减少高功率中红外FI的热效应变得非常有吸引力。
图4:YIG陶瓷、YIG单晶及BIG厚膜的透过率
研究团队在文中首次描述了一种基于高质量YIG磁光陶瓷的中红外FI。在中红外波段测量并比较了YIG陶瓷、YIG晶体和BIG薄膜在饱和磁场中的法拉第旋转角。YIG陶瓷在2.1和3.8 µm下的饱和旋转角分别为114和60 deg/cm。由于其尺寸优势,YIG陶瓷可以实现比BIG薄膜大得多的中红外法拉第旋转角。研究团队设计并制造了基于YIG陶瓷的2.1 µm FI和3.8 µm 法拉第旋转器(FR)。在2.1 µm和3.8 µm处,它们的消光比分别达到25.26和28.30 dB,插入损耗分别为1.01和1.17 dB,与商业FI的标准非常接近。研究还使用高重复率(10 kHz)脉冲激光进行激光损伤测试,在10.2 W/cm2的功率密度下,YIG陶瓷和YIG晶体的表面都发生了明显的损伤。结合尺寸可扩展性的优势,YIG陶瓷有望在未来为高功率中红外FI提供高性能、经济高效的解决方案。
图5 (a) 基于YIG陶瓷的中红外FI示意图。(b) 基于YIG陶瓷的2.1 µm FI和3.8 µm FR的性能。(c) 本工作中开发的器件与商用隔离器之间的插入损耗和消光比的比较。
此项研究得到了国家重点研发计划、上海市自然科学基金等项目的支持。
copyright
2000-
中国科学院上海光学精密机械研究所 沪ICP备05015387号-1
主办:中国科学院上海光学精密机械研究所 上海市嘉定区清河路390号(201800)
转载本站信息,请注明信息来源和链接。 沪公网安备 31011402010030号